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Preface

Integrated Systems, Inc. (ISI) is pleased to submit this SBIR Phase I Final Report

to the Directorate of Mathematical and Information Sciences of the Air Force Office of

Scientific Research. The objectives of this research are to provide some mathematical

and computational tools appropriate to the next generation of Computer-Aided-Control-

Engineering (CACE) environments for robust and adaptive control. It is anticipated that

these results will provide the building blocks for CACE packages which can truly perform

control system synthesis.

The principal investigator for this effort is Dr. Robert L. Kosut, who is a Senior

Scientist at ISI and a Consulting Professor in the Department of Electrical Engineering at

Stanford University. Professor M. Vidyasagar of the Department of Electrical Engineering

at the University of Waterloo was a consultant on the Phase I effort.

The report addresses both Phase I research results and follow-on activities for the

Phase II.

'-
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Section 1

Problem Significance

Phase I research addressed the development of some mathematical and computa-
tional tools that are appropriate to the next generation of CACE (Computer Aided Control

Engineering) environments. These future CACE packages will be radically different from

the present packages in that they will truly be able to perform control systems synthesis,

rather than just analysis.

In order for this ideal situation to come about, it is necessary first to solve some

important problems in the mathematics of control systems, develop corresponding compu-

tational techniques, and then incorporate the results into software subroutines or building

blocks, referred to here as primitives. These primitives, when linked together by a control

system language architecture provide the basic CACE synthesis tools which are accessible

by the user.

The Phase II objectives involve the development, where appropriate, of mathemat-

ical and computational tools for control system synthesis and analysis, the development

of the corresponding primitives, and the generation of compatible language architectures.
The research and development efforts will concentrate on robust and adaptive control of

linear systems. As a by-product of our Phase II research we will also develop some mock-up

software to test the computational tools and proposed language architecture.

1.1 Summary of Phase I Results: Relation to Phase II

The Phase I effort concentrated on some problems in robust and adaptive control

of linear systems. Among the problems investigated during Phase I were the following:

(i) new approaches to the simultaneous stabilization problem, (ii) uncertainty modeling,

(iii) numerical techniques for constrained HII-optimization problems, and (iv) stability of

reduced order adaptive control.

The Phase I objectives are an overture to our Phase II goals which, by virtue of the

CAGE interface, will serve the traditional application areas such as aircraft stabilization

and maneuver guidance, or the more recent application areas of robot manipulator feedback

control. For example:

(i) the simultaneous stabilization problem will enable the same set of controller gains

to work over a wide range of manipulator geometric configurations or aircraft flight

regimes;

Problem Significance Page 5

-w-w - - -l-

.- ,



Integrated Systems Inc.

(ii) uncertainty modeling will be an important part of robust control strategies for

prelinearized models where it is undesirable to include parasitic nonlinearities in

the nonlinear dynamic model, other than via a conic sector bound;

(iii) the H.-optimization problem will ensure that linearized controllers will have guar-

anteed performance robustness to uncertainty, yet will not be overly conservative

so as to limit potential performance; and

(iv) adaptive control will be extremely important for coping with unwanted dominant

nonlinear effects as well as on-line tuning of controller parameters.

As a result of our efforts during Phase I, we are now in a position to begin the

development of some software primitives which correspond to the above control problem

solutions. Development of these primitives are a part of the Phase II objectives.

1.2 Status of Computer-Aided-Control-Engineering (CACE)

This subsection summarizes the status of Computer-Aided-Control-Engineering

(CACE) technology.

1.2.1 History

The foundations of CACE were laid down in the 60's and 70's with the creation

of basic linear algebra subroutine packages such as LINPACK, EISPACK, IMSL and oth-

ers. These packages were (and in many instances still are) used by engineers from many

disciplines to perform the numerical analyses required in their work.

Control engineers and numerical analysts eventually added control specific func-

tionalities to these packages to create control subroutine packages for linear system anal- ,

ysis. These usually included facilities for classical analysis (Bode, Nyquist, and root-locus

diagrams) and occasionally some optimal control primitives (such as Riccati or Lyapunov

equation solvers).

Control subroutine packages have generally been developed in isolated commu-

nities, such as corporations or universities. They tend to handle a fairly limited range K,

of problems and generally embody a particular design philosophy. Since they are not

commercially supported, confidence in them is low outside the authoring organization.

These factors have kept any one control subroutine package from achieving widespread J

acceptance.

Page 6 Problem Significance
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CACE started out in a new direction with the introduction of MATLAB in the5 late seventies. Rather than being just a collection of subroutines, MATLAB included an
interactive interface which gave the user immediate and easy access to numerous linear

algebra routines. Initially intended to be used for basic numerical analysis in mathematics
and engineering in general, MATLAB was soon adapted for control engineering by ISI,
forming the basis for MATRIXx, which appeared in 1982. Systems Control Technology
later followed about one year later with the introduction of CTRL-C, which also uses
MATLAB as the starting point.

There has always been a considerable amount of interest in CACE at universities.
Packages such as DELIGHT.MIMO and CLADP all appeared at about the same time

as MATRIX X. DELIGHT.MIMO was interesting because of its specifications-constrained
optimization approach in control design and CLADP contained some very useful modem
robust multivariable design tools along with classical tools. The history of CACE is shown
in Figure 1-1.

1.2.2 CACE at ISI

ISI has taken an integrated approach to CACE by considering the entire control

engineering cycle and creating a family of CACE products. We have broken the control

cycle into three phases: design, test, and implementation, which are shown in Figure 1-2.
Our CACE products, the MATRIXx design package, the MAX-100 control implementation
processor, and the RT-.BUILD Ada source code generator respectively address those three

phases. Each phase will now be discussed individually.

Design:

The design engineer's ultimate objective is to create a compensator which controls
the plant so as to meet all prescribed specifications. The designer us.'ally does not have

access to the real plant and would rather not concern himself too much with the details of

implementation (although this is now much less of a conern, as we will discuss later). The
design cycle is shown in Figure 1-3.

The designer works in the realm of models. He models the plant to be controlled,

models the compensator design, and verifies that the compensator model controls the plant

model so as to meet the specifications. If he is fortunate, he will have access to test data
from the real plant or an experiment which will allow him to refine his mathematical models
in a process known as system identification. System identification requires sophisticated

numerical algorithms and comprehensive signal processing capabilities.

Problem Significance Page 7
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Figure 1-2. The Control Engineering Cycle and ISI Products

requires access to high quality graphics, both for improving his own perceptions of the

problem and for communicating with others.

MATRIX x was designed to enhance the creativity and productivity of the designer

by giving him comprehensive and easy to use tools for modeling, system identification, de-

sign, and analysis. MATRIXx consists of an interactive command and menu driven user

interface which gives the user access to a large set of linear algebra commands, sophisti-

cated engineering graphics, modern and classical design tools, deterministic and stochastic

system performance analysis commands, system identification and signal processing fea-

tures, and a unique interactive graphic non-linear modeling and simulation facility known

as SYSTEM-BUILD.

Test:

A major part of the control engineering effort is dedicated to testing. Control

system testing has traditionally been a tedious and expensive process. One of the main

Problem Significance Page 9
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Figure 1-3. Steps in Control Design -,

purposes of testing is the feedback of information to the designer for use in compensator

refinement. Delays and communications problems between design and test have often

hindered this process, Shah and Houtchens(1985).

ISI developed the MAX-100 control implementation processor to bring design

and test to within a few keystrokes of each other. The MAX-100 directly implements

MATRIX x compensator designs in real-time, interfacing to experiments through analog-

to-digital (A/D) and digital-to-analog (D/A) interfaces. The MAX-100 is unique in its

ability to implement non-linear multi-rate compensator designs and in its user-transpaxent

connection to the MATRIXx design package.

Implementation: .'

The final phase of the control engineering cycle is the implementation phase. In e

Page 10 Problem Significance



modern digital control implementations, the compensator design is transformed into a set3t of computer instructions. These instructions have traditionally been written in machine
language, but high level languages such as FORTRAN, PASCAL, C, JOVIAL, HAL and
Ada are now in widespread use. The implementation phase is extremely expensive, time
consuming, and error prone. Since the designer does not usually possess the skills required
for real-time code generation, the job is usually left to others who are experts in real-time
programming.

ISI's RT-BUILD Ada source code generator is intended to bridge the gap between
design and implementation by generating Ada source code directly from the MATRIXx
design database, Lehman(1985). The resulting code includes not only the numerical op-
erations prescribed by the design but also the overhead functions required to manage
the real-time aspects of implementation, such as interrupt handling, multi-tasking, and
fault-detection. RTBUILD also includes utilities for verifying the real-time code through
simulation and analysis.

1.2.3 CACE at University of Waterloo

The University of Waterloo has a long history of folowing up research adavances
and carrying them through to the stage of production software. Early examples of this
include the WATFOR, WATFIV compilers for FORTRAN, but there are several recent
instances as well. More pertinent to the topic of this proposal is the software package SF-
PACK, which was developed by M. Vidyasagar and his former doctoral student K.D. Minto.
Like many other CACE tools, SFPACK is based on MATLAB, but with some important
differences. It is particularly well-suited for carrying out designs based on the stable fac-
torization approach; in addition, since it allows the user to define new functions, virtually
all existing methodologies for linear multivariable control can also be programmed in SF-
PACK. One of the novel features of SFPACK is that, in addition to working with matrices,
it also permits the use of an additional data type known as a packed matrix. Specifically,
if a linear multivariable system is described by a vector differential equation of the form

= Ax + Bu

y=Cx+Du

SFPACK permits one to represent this system as a packed matrix

A B]
Problem Significance Page 11
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Common physical operations such as series and parallel interconnections, system inversion,

etc., can be carried out on the packed matrices, and SFPACK automatically does the
necessary bookkeeping on the various submatrices of the packed matrix representation of U,

the resulting system. In this way, SFPACK complements MATRIXx by making a few

operations somewhat easier.

1.2.4 CACE Elsewhere

Although numerous CAGE packages exist, few (if any) have achieved the widespread
acceptance of MATRIXx and none can compare with it on the basis of capability, reliabil-

ity, user friendliness, and availability on a wide range of computers. The basic difference

between MATRIXx and other packages is in the level of integration of its capabilities.

Packages such as CTRL-C/ACSL, the Federated System, and Design Master have been

assembled piecemeal from various subroutine and design packages. This has resulted in

packages with multiple user interfaces, poor reliability, and incomplete capabilities.

Different styles of software user interfaces are required and desireable for distinct
disciplines like structures, aerodynamics, and propulsion, since each can be optimized for

different users. Although good data communication is desirable between those disciplines,

a common syntax to generate structures, aerodynamic, and control data is unreasonable to

expect. Control design, modeling, simulation, and identification, however, are tasks which

are often performed by a single control engineer or within a small engineering group, and
for these tasks only a single interface is necessary.

More recently, PC based CACE packages have begun to proliferate. Unfortu-
nately, these are being developed exclusively for PC's, with no communications capability

or growth paths to mainframe resources. The buyer is thus totally constrained to the PC.
Althiugh PC's are adequate for many kinds of analyses, they are not sufficient for sophisti-

cated designs or simulations, e.g., aircraft control systems. ISI's MATRIXx/PCTmpackage

does not suffer the same drawbacks, since it is part of a fully integrated product line, with

complete data compatibility and communications, as well as full functionality of MATRIXx

,Pine et al.(1985).

1.3 Next Generation of CACE V

At present, despite the recent advances and growing engineering community ac-
ceptance just described, the area of computer-aided design for control systems is still
in an embryonic stage. All the design packages that are currently marketed, including

MATRIXx, are in reality analysis packages, in the sense that the user provides the con-

Page 12 Problem Significance
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troller to be used, and the package (whichever one it is) gives enough information in thegform of graphs, charts, or numbers to enable the engineer to evaluate the design. If the
design is not satisfactory, then the onus is on the engineer to provide the next iteration of

the controller; the packages themselves provide no assistance in this regard.

Moreover, the bulk of these packages are set up to analyze linear finite dimensional
systems. Since almost every dynamical system is nonlinear, if not infinite dimensional

as well, it follows that except for simulation capability, there are no nonlinear analysis

packages. Without such a package it is not possible to conceive of a nonlinear synthesis

package. For example, if either a gain scheduled or adaptive control is required because
of system performance demands, then the engineer has almost no recourse except time

consuming simulations.

We envision that the next generation of CACE packages will be radically different
in that they will be synthesis rather than analysis packages. Thus, in our view of the future,
the engineer will commence the design with uncertain and/or incomplete information about
the system to be controlled, as well as a set of design objectives and constraints. Once this

information is fed into the CACE program, it will in turn generate a controller that meets

the performance requirements while respecting the constraints, or else inform the engineer

that the constraints cannot all be satisfied, and suggest some trade-offs. As the engineer
thinks of more constraints and/or requirements, these are entered into the software and

are accounted for as they are entered. Thus, the CACE process is still interactive, but the
level of interaction with the computer is much higher than it is at present.

Such a utopian vision of CACE is possible thanks to dramatic progress in linear
and nonlinear control methodologies. As a result, it is indeed possible to develop in a few

years, CACE programs that are truly synthesis rather than analysis tools.

.V )r; 1.4 Recent Theoretical Developments

Specific theoretical developments that have advanced our ability to do synthesis

have occurred in linear multivariable control, system identification, and adaptive control.

4 In linear multivariable control, one can mention the stable factorization approach
! [see, e.g., Desoer et al. (1980), Zames (1981), Vidyasagar (1985), Doyle (1985)], which has

xmade it possible to formulate and solve problems such as:

L i (a) Stabilization - Given a plant, final all controllers that stabilize it.

(b) Simultaneous stabilization - Given several plant models, each representing the

plant at different operating points or in different modes, find a common controller

Problem Significance Page 13
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that stabilizes each plant model.

(c) Robustness - Given a nominal plant model, together with an uncertainty pro- ,

file, find a stabilizing controller that is optimally robust, i.e., it preserves system tw

stability under the widest possible extent of uncertainty.

In system identification a better understanding is now available regarding: (i) the

estimation of the plant transfer function from input-output data [Ljung (1985, 1986),

Wahlberg and Ljung (1986)], (ii) designing the identification experiment for intended use

in control design [Gevers and Ljung (1986), Kosut (1986)], and (iii) the analysis of recursive

algorithms for computing parameter estimates [Liung and Sodestrom (1983)]. For example,

it is now possible to solve problems such as:

(a) Parameter convergence - Given a recursive algorithm for estimating unknown plant

parameters, find the asymptotic trajectories of the parameter estimates.

(b) Estimation accuracy - Given a parametric or non-parametric identification algo-

rithm, find the bias and variance of the resulting estimate of the plant transfer

function.

(c) Experiment design - Given a choice of input spectrum, feedback compensation,

and data filtering, optimize the experiment so that performance degradation is

minimized when the transfer function estimate is used in a control design.

Inadaptive control, it is now possible to assess both stability and robustness ,.

properties in certain instances [Kosut and Johnson (1984), Kosut and Bitmead (1986),
Anderson et al. (1986), Kosut et al. (1986)]. In particular, one can solve the following
problems:

(a) Slow adaptation - Given a slowly adjusting parameter adaptive control, find the

asymptotic parameter trajectories, assess its stability, and determine its region of

attraction and rate of convergence.

(b) Local stability - Given a rule for parameter adjustment, one that is not necessarily ,%

slowly varying, determine the local stability and convergence properties of the %

parameter and state trajectories.

Because of these recent adavances in robust and adaptive control, we are now in

a position to take the next step in the development of CACE packages for control system

synthesis. These are descibed in the next section.

Page 14 Problem Significance
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Section 2

5 Phase II Technical Objectives

The objective of Phase II is to solve some mathematical and computational prob-

lems that are appropriate to the development of what we refer to as primitives for control

design, analysis, and synthesis problems. The feasibility of developing aspects of some of

these primitives was investigated in Phase I as described in Section 1. In Phase II, we will

expand the scope and develop primitives and mock-up software to perform the following

functions:

(1) Synthesis of linear control systems - The user inputs to this primitive would be a
plant model (or a set of plant models), and uncertainty profile, constraints, and

objectives. The primitive would return as output a linear controller, if one exists,

as well as system sensitivity to the constraints.

(2) Analysis of transfer function estimation - The user inputs would be an algorithm

(parametric or non-parametric) for estimating the plant transfer function and a

representative true plant system. The primitive would return transfer function

estimation accuracy as a function of data record length and exogeneous input

spectrum.

(3) Analysis of parameter adaptive control - The user inputs would be an adaptive

algorithm for adjusting controller parameters and a representative true plant sys-

tem. The primitive would return the asymptotic parameter and system state

trajectories, measures of stability and convergence, an estimate of the region of

attraction and rate of convergence.

(4) Language architecture for control design - The user will be able to address the

primitives in a consistent formal language which is appropriate to the design of

control systems.

The above functions, or primitives, perform tasks at a fairly high level and ob-

viously involve other lower level primitives. For example, the linear control primitive in

item (1) requires an optimization primitive once the user inputs have been translated into

P ,,the appropriate form. The transfer function estimation primitive in item (2) requires model

building primitives, perhaps a menu driven algorithm selector, and some means of selecting

an exogeneous input spectrum. The adaptive control primitive in item (3) will certainly

involve a primitive which characterizes the solution of ordinary differential equations, as

well as routines for linearization, generating Lyapunov functions, etc. In addition, because

of the several levels of translation involved in passing from one primitive to another, it is

Phase II Technical Objectives Page 15

L M E '1% , ,,:



Integrated Systems Inc.

obvious that the Phase II efforts will, to some extent, be involved with the development of

language architectures for control synthesis and analysis, as stated in item (4). In order to
test the primitives and proposed language architecture, we will also develop some mock-up

software. The Phase III effot will involve the further development of these primitives into n"

commercial grade software.

Page 16 Phase II Technical Objectives
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Section 3

Phase II Work Plan

The Phase II Work Plan consists of four major tasks, each corresponding to the

objectives listed in Section 2. These are now described in sufficient detail so as to highlight

our approach.

3.1 TASK 1: Synthesis of Linear Control Systems

The aim of this task is to address several problems that arise in connection with

the synthesis of controllers for linear multivariable systems. To bring some order into

the description of this task, we group the various problems into three categories, namely:

(i) design for a single operating point, (ii) design for multiple operating points, and (iii) de-

sign for time-varying operating points. To some extent, this partitioning is arbitrary, and

the various subproblems described below can in fact be regrouped in other ways.

Task 1.1: Design for a Single Operating Point

A logical starting point in any controller synthesis problem is to design a controller

for a given single plant, in such a way that several requirements are satisfied. Obviously

the most basic requirement is that the controller must stabilize the plant, or somewhat

more generally, place all closed-loop poles in some prespecified region within the open left

half-plane. But mere stabilization is usually not enough. Typical additional requirements

include, bur are not restricted to: robustness against unmodeled sector-bounded perturba-

tions, minimum and maximum bandwidth for the controlled system, specifications of the

rise time and settling time for the step response, maximum instantaneous amplitudes for

each of the plant inputs, and so on. Problems of thie type are now manageable, in large

part due to the so-called Youla parametrization of all controllers that stabilize a given

plant. This result is briefly summarized here, both complete details can be found, among

other places, in the recent monograph by Vidyasagar (1985). The particular statement

below is for discrete-time systems, but there is complete analogy between continuous-time

and discrete-time systems. This result can be stated as follows: Let P(z) denote the

transfer matrix of the given plant, and factor it in the form

P(z) = N(z)[D(z)]-' = [b(z)] - J N(z), (1.1)

Page 18 Phase II Work PlanI
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whereN, D, N, D are stable rational matrices; further, find stable rational matrices X,3 Y, Xf, k such that the so-called Aryabhatta identity

-N N =1 (1.2)

is satisfied. Then the set of all controllers that stabilize the given plant P is given by

S(P) = {(Y - RN)-(X + RD))}- = {(X + DR)(Y - NR)-'} , (1.3)

as the matrix R varies over the set of all stable rational matrices. The matrix R is known

as the Youla parameter, and it encompasses all of the freedom that one has in designing
the controller. Thus the problem of designing a suitable controller is equivalent to that of

finding a suitable Youla parameter R.

One of the striking advantages of the Youla parametrization is that all transfer
matrices in the controller system are in fact affine functions of R. As a consequence, the
problem of designing a controller subject to the various requirements above can in fact be

reduced to a very general problem formulation, which we refer to as the canonical problem.
This canonical problem can be stated as follows: Given various stable matrices Fi, Gi, Hi
of compatible dimensions, together with stable matrices A, B, C and constants ai, find a
stable matrix R that minimizes the cost functional

J = IA- BRCII (1.4)

subject to the constraints

IlFi - < i- 1,... ai ,ik . (1.5)

In the above, the norms . V and I, can be the H 2 norm, the HCo norm, of the t, norm,

depending on the nature of the performance requirement. Once an optimal R is found that
solves the above canonical problem, it can be substituted into the Youla parametrization
to determine the corresponding controller.

It is at once noticed that the above canonical problem has a very nice structure,

"- namely: it is a convex programming problem. In other words, both the objective function
and all constraints are convex functions of R, which is the variable of optimization. This
has several advantages. For instance, every local minimum of the problem is also a global

minimum. Moreover, convex programming is a well-studied subject, and several powerful
methodologies are available for solving such problems. Thus, once the various performance
requirements are translated into corresponding constraints on the Youla parameter R,
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finding a suitable controller is, in principle at least, straight-forward. Once the canonical

problem is solved and a suitable controller is found, typically the control engineer then

changes those of the performance requirements that are soft constraints, and solves the new

problem. Thus the underlying philosophy is to make the individual problem formulation as 10

complete as possible and to let the computer do all the hard work; in this way the engineer

enters the design loop at a very high level. Now, if such design is to be done on-line, it
is clear that the time required for the solution of the canonical problem is of paramount

importance, since it has to be solved afresh each time the performance requirements are

modified. In Phase I of the project, we have established the feasibility of posing the

controller design problem as an optimization problem, and have suggested some methods

for solving the resulting optimization problem. Following up this work, in Phase II of the

project we would like to study efflcient ways of solving the canonical problem.

The major issue that needs to be confronted in solving the canonical optimization

problem is that the parameter space, i.e., the set of stable rational matrices, is infinite-

dimensional. While there are methods for solving infinite-dimensional programming prob-

lems, in practice it is highly desirable to approximate the problem by a finite-dimensional

one. In Phase I we suggested the following procedure for doing this. We began by observ-

ing that the set of polynomials {zi}, i > 0 is a basis for the set of stable rational functions.

Thus every stable rational matrix can be expressed as an infinite sum
00

R(z) = R,z', (1.6)

for an appropriate sequence of constant matrices {Ri}. Now, in order to approximate the

canonical problem by a finite-dimensional one, we merely truncate the above sum, as

N
R(z) E Riz' (1.7)

i=O

where N is a pre-selected large number. Now the matrices R 0 ,... ,RN are the variables I"i

of optimization, and the objective function and constraints are still convex functions of

these variables. Thus we can continue to use convex programming to find an optimal set

of matrices R 0 ,..., RN. Of course, the resulting polynomial matrix
(N)

R.Pt(z) LRiz(.8
=O b

is only suboptimal for the original canonical problem, but by choosing the integer N to

be sufficiently large, we can get as close as we wish to the true optimal solution to the
' original problem. Finally, by substituting the Youla parameter R )opt into the expression

for the controller, we can obtain a controller which is suboptimal for the problem at hand;

moreover, as N - oo, this controller approaches an optimal one.
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The above procedure is quite appealing, but has two drawbacks. First, the size

of the convex programming problem resulting from the finite-dimensional approximation
can become quite large very quickly. To illustrate this point, note that if the plant has

dimensions n x m (so that the controller C and the Youla parameter R have dimensions
m x n), then the number of variables of optimization is nmN. Thus, if the plant has
dimension 5 x 5 and one uses a 20-th order polynomial approximation to R, then the
number of variables is 500! The second drawback is that the order of the controllers that
result form such an approach is generically equal to N + k, where k is the McMillan degree
(i.e., the state-space order) of the plant. Thus, if one uses a reasonably large value for N
(which is necessary in order to achieve an accurate polynomial approximation to a rational
function), then the consequence is that even quite low-order plants will require high-order
controllers. The principal aim of this subtask is to address these two drawbacks.

In order to counter high dimensionality in the convex programming problem, we
propose to try out alternative means of converting the infinite-dimensional canonical prob-
lem into a finite-dimensional one. A logical starting point is to replace the Taylor series

expansion

R(z) E Riz' (1.9)
i=0

by a series of the form
00

R() = R,(z + A.10)
i=0

where A is a real number with JAI > 1. In effect, the Taylor series has the property that
all partial sums of the series have all of their poles at infinity, whereas the alternate form

suggested above has the property that all partial sums have all of the poles at -A. By

appropriate choice of A, it should be possible to achieve more rapid convergence of the
series than would be the case with a Taylor series. This alternative formulation has the
advantage that the finite-dimensional approximation to the original canonical problem
would still be a convex programming problem, and thus easy to solve. %

Another alternative is to expand R(z) in a continued fraction expansion of the
form

R(z) Rp(z) + (1

Z + ZR+

It is a fold theorem that continued fraction expansions tend to converge faster than Taylor

series. There are two difficulties with using a continued fraction expansion, however.
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First, it is not clear what restrictions on the coefficients Ri ensure that R(z) is a stable

rational function. Second, if the expansion is truncated after a finite number of terms

and the resulting coefficients are used as the variables of optimization, then the resulting

optimization would no longer be a convex programming problem, but rather a nonlinear

programming problem which is more difficult to solve.

To obtain controllers of reasonably small McMillan degree, we propose to proceed

as follows. Once a suboptimal choice is made for the Youla parameter R, it is possible to

form the composite matrix

A, = [Dc NTCI = [Y- RN x + RD) (1.12)

The matrix A, is stable, even if the controller itself is not. Thus it is possible to approximate

the matrix Ac by another stable matrix M of lower McMillan degree, using for example

the order reduction due to (Glover 1984). Suppose the resulting matrix M, which is stable

and has the same dimensions as Ac, is partitioned commensurately with (1.12), as

M=[F G]. (1.13)

Then the system C = F-G is a approximation to the original controller C = D--N',

and moreover it has the same McMillan degree as the matrix M. Finally, it is possible to

obtain an estimate of the graph metric distance between the systems C and C. Complete

details may be found in (Vidyasagar et al. 1987).

Task 1.2: Design for Multiple Operating Points

Next we examine the problem of designing a single controller for several operating

points. Such a problem can arise in several ways. Two common examples are (i) controller

design for a nonlinear system at distinct operating points or distinct modes of operation,

and (ii) controller design for a linear system subject to failures in sensors and/or actuators.

A typical application is the design of a controller for an aircraft which is effective over a

range of flight conditions such as altitude and Mach number. The difference between the

problem studied here and that studied in the first subtask is that, in the latter, one is given

a single plant together with associated performance requirements, whereas in the former,

one is given a collection of plants and a set of performance requirements for each plant. In

contrast with the problem of designing for a single operating point, controller design for

multiple operating points is relatively undeveloped, and much needs to be done.
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Let Pi,.., P, denote the Models of the plant at the various operating points. Note

that the various plants need not have the same McMillan degree, i.e., the dimension of the

state space model can change as the operating point changes. However, it is assumed that

the dimensions of the matrix Pi(z) is the same for all i; the loss of sensors (actuators) can

be accommodated by setting corresponding rows (columns) equal to zero. The problem

now is to choose a common controller C such that, for each i, the controller C stabilized

the plant Pi, and in addition, satisfies the usual sorts of performance requirements such as

robustness, etc.

In the case where only a single plant is to be controller, merely stabilizing the

plant is not difficult problem. The problem of choosing a common controller C to stabilize

each of a given set of plants P1 ,..., P, is known as the simultaneous stabilization problem.

Depending on the nature of the plants, such a controller may or may not exist. The

Pt following results (Vidyasagar and Viswanadham 1982) gives a necessary and sufficient
condition of the existence of a common stabilizing controller.

Theorem 3.1 Given the plants Pi,..., P, factorize each plant Pi in the form

A, = ND i ./ 1 , , (1.14)

'and choose matrices Xi, Y., Xi, Yi such that

[= i Di i i . (1.15)

Now 
define

and define the auxiliary systems

" :" i = BiA-1 2 r =,.,. (1.17)

.a ~Then the plants P1 ,. .. ,Pr can be simultaneously stabilized if and only if there exists a

stable matrix M such that M stabilizes each auxiliary plant Qi, i = 2,... ,r.

In Phase I of this project, we examined a generalization of the simultaneous sta-

bilization problem whereby one was given not only a set of plants P,..., Pr, but also
associated domains of stability Dl,..., Dr; the objective is to find, if possible, a common
stabilizing controller C which placed the closed-loop poles of the i-th system in the region

Di. We derived the following results for this problem, which generalized Theorem 3.1.
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Theorem 3.2 Suppose D1 is a subset of Di for i = 2,...,r. Let all symbols be

as in Theorem 3.1, except that all poles of the eight matrices in (1.15) are in the region

Di. Then there exists a controller that places all closed-loop poles of the i-th system in

the region Di if and only if there exists a matrix M whose poles are all in the region D.

such that all zeros of Ai = MBi are in the region Di.

In addition to the above, there is another set of results that is worthy of mention

in this context.

Theorem 3.3 Suppose the plants P 1 ,... ,P all have dimensions n x m. Then

simultaneous pole assignment is generic if r < max{n, m}.

Comparing the known results for simultaneous design with those for design at a

single operating point, we can notice an important difference at once. In the case of a

single plant, we have available the Youla parametrization, which gives an expression for

all controller that stabilize the given plant, and which serves as the starting point for the

development of a more elaborate design procedure, culminating in the canonical problem.

In contrast, there is no result available to date which gives an expression for all simul-

tan3ously stabilizing controllers. The only exception to this statement is in Section 3.3

of (Vidyasagar 1985), which gives a highly indirect expression for all controllers that si-

multaneously stabilize a pair of scalar plants. We believe that the problem of deriving

an expression for all simultaneously stabilizing controller is hopelessly intractable in the

general case. On the other hand, in the case where the plants all have either a single

input or a single output, it is indeed possible to find such an expression, though it is a

bit unwieldy. In the general case, it is possible to derive expressions that generate large

families of simultaneously stabilizing controllers (though by no means all of them). We

now describe the procedure in the former case, where the number of outputs equals one;

the case where the number of inputs equals one is entirely similar. Note that the procedure

is based on the contents of (Vidyasagar 1985, Section 7.6). The results in the general case

are not described here in the interests of brevity.
.4.,

"i Given the plants P 1,. .. ,P, find l.c.f.'s (di, 9i) for each plant Pi, and form the

matrix i i
A* M =r (1.18)...

Now a controller C = Ncd-1' simultaneously stabilized each plant Pi if, and only if each of
P.%
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the return differences

did, + , N , (1.19)

is a unit. N ow define UJ_

-U = (1.20)

Ur J
and note that

M Xdc]=U. (1.21)

Then a necessary and sufficient condition for C to simultaneously stabilize all plants is that

each element of U is a unit. Thus the set of all controllers that achieve simultaneous stabi-

lization is precisely the set of all solutions to (1.21). These solutions can be parametrized

as follows. Find a matrix L such that L complements M, i.e., such that

A L (1.22)

is a unit matrix, and define S L- 1 . Then the set of all solutions to (1.21) is

[N =sU q (1.23)

where q is an arbitrary vector of stable functions of the appropriate dimension. Now it is

shown in (Vidyasagar 1985, Section 2.4) that every unit is of the form exp(m) for some

analytic function m. Thus the set of all solutions to (1.21) is given by

exp(m)"

S (1.24)

The conclusion is that it is quite feasible to formulate something like the canonical problem

for the case of simultaneous design, and this is one of the objectives of the Phase II research

effort.
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Task 1.3: Design for a Time-Varying Operating Point

Thus far, we have discussed the design of controllers over a range of operating

conditions as a simultaneous design problem. This presupposes that the purpose of the

controller is to achieve good performance at any of a given set of static operating conditions.

In reality, however, this is not what controllers are called upon to do. Going back to the

earlier example of a flight control system, the controller is expected to maintain satisfactory

performance as the flight conditions vary with time over a range of values. Thus, in order

to be useful in practice, any synthesis methodology must be capable of tackling the case

where the system is linear and time-varying. The objective of this subtask is to study

this problem and propose some likely solutions. The next several paragraphs present some

technical background on the graph metric which will play an important role in this subtask.

Then the actual problem to be studied and the approach to be adopted are stated.

Suppose the system which we want to control is described by a set of linear differ-

ential equations with time-varying coefficients. These coefficients reflect the time variation

of physical parameters. To be specific, suppose the system equations are of the form

E m (1.25)

i=0 i=0

With this linear time-varying system, we can associate a family PA, A > 0 of linear time-

invariant systems, known as the frozen systems, which are defined as follows. As the name

implies, the frozen systems are merely the time-varying system frozen at a particular time.

Specifically, the frozen system PA(s) is the system whose transfer matrix is

PA(s) = [A,(s)E-l[BA(s)] , (1.26)

where
n m

AA(s) = ZAi(A)si , BA(s) = ZBi(A)s' " (1.27) 9.
i=O i=O

Now, if the time-varying system is slowly varying, then the problem of synthesizing

a controller is quite a bit simpler than otherwise. But what does slowly varying mean?

Intuitively, the time-varying system can be considered to be slowly varying if the rate of

change of the systems PA, in the space of transfer matrices, is substantially smaller than

the time constants of the individual (time invariant) transfer matrices PA. However, in

order to make this intuition notion more precise, it is necessary to be able to define the

rate of change of a system in some mathematically exact fashion. If we had a notion

of distance, i.e., a metric, on the set of all transfer functions, then it is easy to do this.
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Suppose such a metric is available, and call it d; thus d(PI, P2) is the distance between
two (not necessarily stable) transfer functions P, and P2. Now we can examine the rate of

change of the quantity d(Pt, PT) with respect to either argument to ascertain how rapidly
the system is changing. For instance, for a fixed time to, the rate of change of the quantityi d(Pt+t., Pto) gives an indication of how rapidly the system is changing at time to. If this

rate of change is quite small compared with the dominant time constants of the plant

Pto, then we can say that the system is slowly varying at time to. We believe that it
is possible to combine this notion of a slowly varying system with known techniques for

the synthesis of linear time-invariant systems to derive effective methods for the design of
linear time-varying systems. The purpose of this task is to make the above ideas concrete.

The preceding paragraph shows that it is quite useful to have a notion of a metric
on the set of transfer functions. Moreover, this metric should be reasonable on physical
grounds from the standpoint of feedback stabilization. That is, if the distance between two
plants d(P, Q) is small, then a controller that stabilizes the plant P should also stabilize the
plant Q, and moreover, the resulting stable feedback systems should have nearly identical

responses. The graph metric, introduced in (Vidyasagar 1984), ( Vidyasagar 1985, Ch. 7)
has these properties. This metric and its principal properties are briefly recalled here in
the interests of convenience.

Given a tcansfer matrix P, a right-coprime factorization (N, D) of P is said to be
normalized if the matrix

Ap N(1.28),

is inner. It can be shown that every rational matrix has a normalized r.c.f., and that it is

unique within right multiplication by a real orthogonal matrix. Now suppose P and Q are
two transfer matrices having the same dimensions, and let Ap, AQ be normalized r.c.f.'s

of P and Q respectively. Define

i;' .'. 6(P' Q) = 00~b <_ ]A p - AQRII°°' (1.29)

d(P,Q) = max{6(P, Q),6(Q, P)} . (1.30)

Then d(P, Q) is the graph metric distance between P and Q. Note that it is possible to
define the graph metric between any pair of plants of the same dimensions, irrespective of
their McMillan degrees, for example.

Next, suppose a plant P is stabilized by a controller C, and define

([T(P, C) [P + CR) (1.31)
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Then it is shown in (Vidyasagar and Kimura 1986) that feedback stability is preserved if

P and C are changed to P and C1 respectively, provided
1b

d(P, PI)JIT(P, C)II. + d(C, Ci)JJT(C,P)JI < 1 . (1.32) " .

The preceding paragraphs illustrate the efficacy of the graph metric in studying

the robustness of feedback stability. Unfortunately, at present there is no precise way of I

computing the graph metric distance between two plants. However, in view of the results

obtained in the Phase I effort, it is possible now to compute the distance to an arbitrary '

degree of accuracy. Observe that the problem of computing the distance d(P, Q) is a

particular instance of the canonical problem discussed in subtask 1, since the quantity

b(P, Q) is the value of the constrained optimization problem

min jjA, - AQRII,, subject to IJRJJOO 1. (1.33)

Having now demonstrated the feasibility of computing the graph metric distance

between two plants, we now state the problem to be studied in this subtask. Suppose we

are given a family of plants PX, where A is a vector valued argument varying over a set A;

A could simply be time, or it could be a vector of physical parameters (e.g., altitude and,

Mach number in the case of aircraft). We wish to find a common controller C such that
the feedback system shown in Figure 3-1 is stable under two situations: '

U2

Figure 3-1. Feedback System with Varying Parameters

.55-.
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(i) when A equals any constant vector in A, and (ii) when A varies sufficiently 1

slowly over the set A. The first problem, namely that of finding conditions under which
an infinite family of plants is simultaneously stablizable, is generally studied under the
heading of robust stabilization; see (Vidyasagar and Kimura 1986) for example. However,
the second problem is quite new. The available theory of slowly varying systems is almost
entirely stated in a state space setting; see (Vidyasagar 1978, Section 5.7) for a good
summary of available results. It is thus a challenge to work an input-output version of
the stability theory of slowly varying systems. Intuitively, one should be able to prove a
theorem which says something like: If a controller C stabilizes each plant PA, A E A, and
if each closed-loop transfer matrix has degree of stability u, then the system of Figure 3-1
is stable even when A is a function of time, provided IA(t)l S 11p In other words, in

0order to assure the stability of a slowly varying system, the common controller C should
not only stabilize the system, but also achieve a minimum degree of stability. Part of this
subtask is to make the above intuitive notions precise, by finding a suitable mathematical
definition for the concept of degree of stability.

There is another problem to be studied as a part of this subtask. Consider again
the problem of designing a flight control system as a motivating example. In this case one
is given a flight envelope, and it is usually quite unrealistic to expect that a single con-
troller will prove to be satisfactory over the entire flight envelope. Under these conditions,
the logical thing to do is to partition the flight envelope into several regions, such that
within each region a single controller can be used. As the aircraft makes a transition from
one region to another, the controller is switched to the appropriate one. What is being

described above is a more general version of gain scheduling, which might be called con-
troller and merely adjusts the parameters of the controller (the gains) as the plant moves
from one regime into another, whereas we are proposing that the entire controller should
be switched. This suggests several issues, such as: (1) How does one go about partitioning
the flight envelope into the various regions? Is there a systematic way of choosing the
regions so that they are as large as possible? (2) As the plant moves from one region into
another and the controller is switched, how can one be certain that transient stability is
assured? The method of designing controllers for each static operating condition does not

say anything about the transient stability. We believe that, at the end of the Phase II
effort, we will be able to address such issues. For the moment, we will simply point out
how the two problems mentioned above are natural outgrowths of the various problemsmentioned earlier as a part of Task 1.

First, consider the problert of partitioning a given flight envelope, or more gener-
ally a given set A is parameter space, into a union of subsets such that, within each subset
Ai it is possible to design a common satisfactory controller. As a first attempt, this can
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be done by trial and error. In other words, once the engineer has in mind a particular

partitioning, the problem of deciding whether or not there exists a common satisfactory
controller within each subset of the partitioning is precisely the problem studied in subtask a

1.1, and can be posed as a canonical optimization problem.

Next, consider the problem of assuring not only steady state but transient stability

for the controlled system as the plant moves from one regime to another and the controller

is switched appropriately. This is a natural extension of the problem stated earlier in this

subtask, namely that of studying the stability of slowly varying systems from an input-

output viewpoint. In the present instance, the plant is (presumably) slowly varying, but

the controller is changing abruptly, i.e., switching from one configuration to another.

Summary

For the convenience of the reader the various research issues raised as a part of

this task are briefly summarized below. These are not intended as complete problem

statements, but merely as synopses of the problem statements.

1. Improve the efficiency of the solution procedures for the canonical optimization

problem by seeking alternate representations of stable rational functions. iL

2. Find an analog to the canonical problem in the case of simultaneous design.

3. Develop a stability theory for slowly varying systems which is stated in an input- f

output framework, rather than a state space framework.

4. Study the transient stability of slowly varying systems when the controller is

switched.

.,.
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3.2 TASK 2: Transfer Function Estimation

The main objective of this task is to address some problems that arise in connection

with the development of CACE primitives for the analysis of algorithms which estimate

a plant transfer function from input-output data. This task will involve the development,

where necessary, of the appropriate mathematical and computational tools, as well as theU

appropriate language architecture. As a by-product of our research we will also develop

some mock-up software to test the numerical methods associated with the primitive.

There are a great many practical situations where a control system must be cali-

brated or adjusted on-line so as to account for changes in the plant or poor initial modeling.

Of course a robust control will account for some changes, but the possible plant variations

may be so large as to preclude a satisfactory performance. One is then led to a control

re-design based on current records of plant input-output data, i.e., adaptive control. In

this task and the next (Task 3, Section 3.3), we discuss two related aspects of adaptive

g control: (1) transfer function estimation, and (2) parameter adaptive algorithms.

This task will be organized into three major categories or sub-tasks, namely:

(i)computing the mean-square-error, (ii) experiment design, and (iii) estimating model

accuracy.

Task 2.1: Computing the Mean-Square-Error (MSE)

The estimation of a system's transfer function from input-output data has, of

course, a long history, and we will not attempt to document that here. There are many ex-

cellent survey articles and textbooks that can be referenced, e.g., Jenkins and Watts (1968), I

Astrom and Eykhoff (1970), Automatica: Special Issue on Identification(Jan. 1981), Ljung

and Soderstrom (1983), to name a few. These references clearly explain the theory and

practice of both parametric and non-parametric methods of transfer function estimation. P

Parametric methods usually involve the minimization of some time-domain function of the

parameters using an iterative or recursive algorithm. Non-parametric methods involve the

'- computation of correlation functions and/or their respective spectral densities. In either

case, it is possible to obtain theoretical results which provide asymptotic expressions, as

the data record length increases, for the mean-square-error (MSE) of the transfer function

estimate. In the context of our previous discussion of robust control (Section 3.1), it is

precisely the MSE which reflects model accuracy.
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The Problem Set-up

Suppose that the true plant system to be estimated can be described by the

discrete-time relation
y(t) = Po(q)u(t) + d(t) (2.1)

(We use t to denote sample times, i.e., t = 0, 1,2, ..., etc; q is the shift operator where

qX(t) = x(t + 1) and q- 1 x(t) = x(t - 1). Also, we use the term transfer function to denote

an operator which depends on q.) In (2.1), y(t) and u(t) are the measured input and

output , Po(q) is the transfer function, and d(t) is the disturbance. The vector [u(t) (t)]T
is assumed to have the spectral density matrix

s(W) = [ (W) sud(=) R(r)e- jw dT- -7r <w < r (2.2)LSd.(WM) Sdd(W~) -- 00' -- -

and correlation matrix
R(r) = £{[u(t)u(t + r) u(t)d(t + r)] 

(23)
I d(t)u(t + r) d(t)d(t + r)(

where £(-) is the expectation operator. It is further assumed that d(t) is the output of a

linear system with transfer function Wo(q) which is driven by white noise v(t) of intensity

a°. Thus,

d(t) = W,(q)v(t) (2.4)

and
Sdd(W) = IWo(e ) o ".

Sud(W) = Wo(e )sjW (w) (2.5)

The estimation problem is to estimate Po(q) and Wo(q) from the observed finite data

record N

z N  {y(t), u(t) t = 1,...N} (2.6) -

3

Parametric Methods

Parametric methods of identification proceed by first selecting a set of candidate ;

models:
y(t) = P(q, O)u(t) + W(q, 9)v(t), 0 E F C RV (2.7)

I%.

The set F will be defined below, but any one choice of 9 e F yields a fixed model in the

set. Assuming that v(t) is white noise, then the best prediction of y(t) given data up to

t - 1 is

q(t, 9) = W-(q, 9)P(q, O)u(t) + [1 - P-(q, O)]y(t) (2.8)
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The map (y, u) t- 0 defined by (2.8) is referred to as the one-step ahead predictor. Hence,
the prediction error is

0(t, B) = - 0t, B) (2.9)

= W- 1 (q,O)[y(t) - P(q,O)u(t)j (2.10)

The set T is now defined as those 0 E RP such that the predictor is stable, thus Y = {0 E

Rv/ = W- and W- 1P are stable.

A proceedure for selecting 0 E F is to minimize some function of the prediction
error. For example, let the estimate be

ON ==arg min VN (0) (2.11)
8EY

where

VN(9) = (2.12)

Techniques for computing ON involve either iterative or recursive algorithms. These will 0
be discussed in a later section.

Suppose we have computed ON. The next step is to form the transfer function
estimates P(q, ON) and W(q, ON). It is important when using these estimates in control de-
sign to be confident of their accuracy. For example, we would like to know the convergence
rate as well as the properties of the limiting estimates P(q, 0.), W(q, 0.) with respect to
the true system P.(q), W.(q). A knowlege of the mean-square-error would determine therequisite robustness of control that is required to use the estimates for design. Expressions

for the MSE which are asymptotic in the data length can be obtained. Usefull numerical
methods do not as yet exist, although our Phase I feasibility study indicates that such
methods can be developed in Phase II.

Asymptotic Expressions for the MSE

Expressions for the MSE are in general quite complicated, even the asymptotic
results for large values of N. It is shown in Ljung(1985), under fairly weak conditions on
the model set, that with probability one,

lim ON = 0. (2.13)N-t°

where
0. =arg min 1(O)

OEYF (2.14)
V(G) E [e 2(t, 6)) '':
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Moreover, the quantity

v IN(ON - 0.) (2.15) Aj

is asymptotically normal with zero mean and covariance matrix

R.= [V"(.) 1 rni {N[Vk( .)f"Vk(9.)}[V"(9)]- 1  (2.16)
N-oo

where ' and " denote differentiation with respect to 0, once and twice, respectively. We "4

remark that these results hold for more general norms of the prediction error, i.e., not

necessarily quadratic. The asymptotic expressions for the transfer function estimates can
be obtained from the above results. It is convenient to introduce the operators

T(q, 8) = [P(q, 8) W(q, )] (2.17)

T.(q) = [Po(q) Wo(q)]

These transfer operators represent the map (v, u) F-+ y for the plant model and true plant.

Then, with probability one,

lim T(q, ON) = T(q,O,) (2.18)
N-oo

Moreover, the quantity

vf-[T(eJw, ON) - T(ej-, 0.)]T (2.19)

is asymptotically normal with zero mean and covariance matrix

Q.w) = [T'(e ,O.)TR.T'(e-,0.) (2.20)

Finally, the MSE of the transfer function estimate is ,

MN(W)=E{BT(ej,ON)B(e-J',ON)} (2.21)

where

B(q, 9) = T(q, 9) - To(q) (2.22) -

For large N the MSE is approximately :....

MN(w) BT(ej-,O.)B(e-jw,O.)+NQ.(W) (2.23)

The quantity B(ejw,0.) is referred to as the bias and (1/N)Q.(w) is the variance.
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On calculating the MSE

It is obvious that the expressions above for the MSE are quite complicated in

the sense that they are beyond hand calculations. The expressions can be significantly
simplified when the model order is large. Simulated data shows that the asymptotic
result for large data length and model order is often valid for low orders, but this is not
satisfactory for a quantitative analysis. Our interest is to develop numerical methods to

handle the calculation for any model order, and this is a goal of Phase II.

At this point we can make two additional observations about the above expression

for the MSE. In the first place,the result is valid for some large data length N, but there is

no means to determine the error induced for any particular N. Secondly, since the asymp-
totic resullt depends on 0., it is necessary to calculate this limiting parameter estimate.
Of course 0. is never known to the user beforehand, and hence, is only a quantity whose
properties are useful for analysis of the estimator. During Phase I we studied the feasi-
bility of computing the asymptotic MSE above, as well as calculating 0.. During Phase
II we will develop the computational techniques and appropriate primitives. We also plan

to study the problem of computing non-asymptotic expressions for the MSE, i.e., for any
data length and model order.

Non-Parametric Methods

Parametric methods as we have discussed them, involve transfer function models

-. which can depend on the parameters in a specified way. Such models can arise from physics

and then the parameters have a physical meaning. Often canonical models are used where
now the parameters can be taken as coefficients in a transfer function. In the former

case there are fewer parameters but these enter into the transfer function coefficients in
V a complicated manner. In the latter case there are more parameters to learn , but they

..- ' .. enter the model in a simple manner, thereby reducing computation. Methods which do
not require such structural knowledge or assumptions are referred to as non-parametric;
the only assumption is that the system has a transfer function, i.e., it can be described as
in (2.1)-(2.5).

matngAvailable methods for non-parametric transfer function estimation rely on esti-
mating spectral densities. The methods are based on time-series and Fourier analysis of

% finite data sequences. There are many excellent textbooks on the subject, e.g., Jenkins
e . and Watts(1968), Brillinger(1975), and Priestly (1981). The reason that we consider non-

parametric methods is that they can provide estimates of model accuracy as a function

of frequency, particularly over those frequency ranges where either the model structure is
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poorly known, or else the model accuracy in that range is unimportant for control design.

For purposes of illustration, consider system (2.1)-(2.5) with the additional as-

sumption that u(t) and d(t) are uncorrelated, i.e., Sud(w) = 0. We then have the relations:

S,,(w) = Po(ejW)SUu(W) (2.24)

S 1 (w = IPo(ejW)I 2Suu(W) + Sdd(w)

Suppose we have obtained estimates of Syy(w), Sy,(w) and S,,(w) from the finite data

record zN (2.6). Denote these estimates by Sg (w), SN (w), and SN,(w). Using (2.24) we

can take as estimates of Po(eiw) and Sdd(w) the following:

SP 'w) = S (LO)/SN (W)(C U a (2.25)

Sdd(W) = S,,(LO) - IP(w)Io2 S(2(.2)

The properties of these estimates clearly depend on the ability to estimate spectral

densities from a finite data record. The standard techniques involve data windowing in time

and frequency, aligning, anti-aliasing filters, and many other proceedures which it is not

possible to desribe here. The details can be found in the previously mentioned references.

However, just as in the parametric case, it is also possible here to obtain expressions for

the MSE. A typical expression approximate expression for larie N is

.{1P(w)- P (eJw)12} - M 2 ()IR(w)I 2 + (2.26)

where

R(w) = P"(el' ) + P.,(e1)S'.(w)/S.(u(w) (2.27)

with' and" denoting differentiation with respect to w, once and twice, respectively. Also

7r.7" M(7) = /w2W-(w)dw
T ((2.28)

L(y) 7r Y (w) dw

where W-,(w) is the lag window of width 1/-y. The window is used to generate "smooth"

spectral estimates and as seen in the above expressions can be used to adjust the MSE.

Typically, as -t increases, the window "ecomes more narrow, M(y) decreases, and L(-y)

increases. Thus, as -f increases, the first term (the bias) decreases, but the second term

(the variance) increases. Clearly for large N there is an optimal choice of lag window width

to minimize the MSE for fixed N, and this can be calculated. Obviously hand calculations

of the MSE are not possible for any problem of reasonable complexity. it is an objective
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of Phase II to develop techniques to efficiently perform the calculation. We also point

out that (2.26) is an asymptotic expression, and as stated before , we are more concerned

with computing the MSE for any finite N, one that is not necessarily large. Moreover, a

quantitiative assessment of how large is large is not known at this time. We plan toexplore

these computational issues in Phase II.

Summary

In this section we have indicated that the MSE is a function of the true plant, the

estimation proceedure, and the length of the data record. Hence, computation of the MSE

provides an analysis tool for determining the effectiveness of an on-line control adjusted

scheme which is based on transfer function estimation. The feasibility of developing a prim-

itive for MSE computation for both parametric and non-parametric methods of transfer

function estimation was investigated during the Phase I effort. During Phase II we plan to

address the computational and mathematical problems described above and the develop

a primitive to perform the MSE computation. Appropriate language architectures will be

investigated along with the development of some mock-up software.

U
Task 2.2: Experiment design

The MSE can also be used to design the estimation experiment, so that during

the actual experiment the maximum amount of data is extracted in computing the trans-

fer function estimate. This particular issue, referred to as ezperiment design, has been

extensively investigated, e.g., see the above references. Recently ,there has been a specific

interest in using these results in order to design experiments which optimize the use of the

transfer function estimate in control design, e.g., Ljung(1985), Wahlberg and Ljung(1986),

Gevers and Ljung(1986). These results minimize a weighted norm of the MSE with respect

to free parameters or choices in the experiment, e.g., input spectrum, model order, etc.

Since the MSE depends on the true plant, the methods offer usefull guidelines for designing Jf

the experiment. In Phase II we will develop computational proceedures for determining

the various design variables.

At the present time the use of the MSE as a measure of experiment design for the

case when the intended use of the transfer function estimate is control synthesis is still in

the beginning stages. One of the major problems is that the MSE is not a direct measure 4

of closed loop performance. During Phase II we plan to extend the known results to direct

measures of control performance.
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Task 2.3: Estimating model accuracy .' ri

As espoused in Task 1 (Section 3.1), the requisite information for robust stabi-

lization is a nominal model of the plant together with an uncertainty profile. From the

above discussion, computation of the MSE allows one to evaluate a control design which

is based on a nominal (estimated) model together with an a priori estimate of model ac-

curacy. During Phase I, we studied the feasibility of developing a proceedure by which

model accuracy could be obtained, or estimated, from on-line data. The basic idea is to

use both parametric and non-parametric methods of transfer function estimation, where

the non-parametric methods yield direct estimates of the accuracy. Essentially, this ap-

proach provides a direct estimate of the MSE. The accuracy to which the estimate is set

depends on the criteria for control design. Some preliminary results will be reported in

Kosut(1987). The basic idea is to postulate a parametric model with two types of parame-

ters, say a E Rk and /3 E R'. The a parameters correspond to, say, physical parameters in

the usual sense of model building, but the P3 parameters are auxiliary and used to account

for poorly known aspects of the system dynamics. For example, in the parametric model

(2.7) the B parameters consist of both a and 3 type parameters. To illustrate the point

further, let P(q, B) in ( 2.7) have the decomposition

P(q, 0) = P(q, a)P(q, /3) (2.29)

where P(q, a) is the usual parametric model and where P(q, P3) is a simple structure which

accounts for unmodeled dynamics. For example, high frequency unmodeled dynamics V

could be represented in a crude way by

P(q,/3) q (2.30)P~q'fl) =- 12 ,

Obviously more elaborate forms can be established depending on the kind of a priori knowl-

edge available regarding the location and type of unmodeled or poorly known dynamics. A

proposed generic form is shown in Figure 3-2, where G(q) is a known interconnection trans-

fer matrix, K(q, a) contains all the known parametric stucture, and L(q, /) represents the

poorly known dyamics. The true plant would be represented by the corresponding triple

G(q), K(q), Lo(q).

This model isuseful for control design because the parameters a and /3 can be

calculated from (2.11) [Kosut,1987)], and then a non-parametric method can be used to

estimate the model error between the estimated system G(q), K(q, &), L(q, /) and the true

system G(q), K.(q), Lo(q). When this proceedure is coupled together with the sysnthesis

methods discussed in Task l(Section 3.1), we have an on-line robust control design scheme, ',
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~~Figure 3-2. A generic parametric model structure ,

i what is referred to as adaptive calibration. During Phase II, we plan to develop the ap-

propriate primitives and mock-up software associated with the generic model structure in

Figure 3-2, as well as developing the mathematical and computational tools for on-line

model accuracy estimation....
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3.3 TASK 3: Analysis of Parameter Adaptive Control

The main objective of this task is the development of a CACE primitive and

mock-up software for the analysis of parameter adaptive control of a linear system. This

task will involve the development, where necessary, of the appropriate mathematical and

computational tools, as well as the requisite language architecture for user interface with -i

the primitive. We have distributed the work in this task into three major areas: (i)adaptive

control of linear systems, (ii) time-scale decomposition and averaging, ans ( iii)fixed point

analysis. Before describing these subtasks we will provide some background information.

Background and Current Status

Uncertainty underlies the reason for adaptive control. At one extreme there are

physical processes which in many instances defy practical mathematical modeling, e.g.,

engine dynamics, structural joints, and welding, to name a few. At the other end of

the spectrum are systems whose model structure is sufficiently well-known, but whose

parameters are uncertain, e.g., large space structures, disc drives. Such uncertainty can

significantly limit the performance attainable from a fixed model based control architecture.

Therefore, the use of an adaptive control system gives more options for minimizing the

risk in achieving performance objectives.
I

The aim of adaptive control is to implement in real-time and on-linc as many as

possible of the design functions now performed off-line. To realize this aim requires a

theory of stability and robustness of such inherently nonlinear systems, the availability of :,d

software tools for analysis and design, and the hardware for implementation.

At the present time we stand a the beginning stages in the development of theory

applicable to adaptive control systems. In the past few years these has been vigorous

activity and debate on the question of the robustness of the adaptive control, i.e., what

happens when ideal conditions are violated, as would be expected in practice. Although

simulations of simple systems under apparently minor non-ideal conditions have shown

degraded performance and even instabilities, e.g., Rohrs and co-workers (1981, 1982),

there is equally convincing evidence of practical successes of complex industrial systems,

e.g., Astrom (1981).

Motivated by these facts, many researchers pursued the robustness issue. The

result of some of these efforts are contained in the recently published textbook: Stability of

Adaptive Systems: Passivity and Averaging Analysis, MIT Press, 1986, Cambridge, Mass.

The authors are B.D.O. Anderson, R.R. Bitmead, C.R. Johnson, Jr., P.V. Kokotovic,

R.L. Kosut, I.M.Y. Mareels, L. Praly, and B.D. Riedle. This publication is obviously an
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outgrowth of considerable international collaboration among several researchers. * The

material in the text represents refinements of earlier work: Reidle and Kokotovic (1985,I 1986) on slow adaptation and the integral manifold; Astrom (1983, 1984) showing how the

method of averaging explains instabilities and drift; Kosut, Anderson, and Mareels(1987)

on the relation between averaging and persistent excitation; and Kosut and Anderson

(1986), Kosut and Johnson(1985) on linearization and local stability.

Averaging: Uses and Limitations

Although the above mentioned text documents a well-defined mathematical re-

search problem, the picture is not at all complete. In the first place, the method of

averaging requires slow adaptation which can be counter-productive because performance

can be below par for the long period of time it takes for the parameters to adjust. Secondly,
the results are valid only for a portion of the state-space, in particular, the parameters are

restricted to more within a subset of the constant parameter stability set. Another area of

concern when using the method of averaging as an analysis tool, is that the speed of adap-
tation required to satisfy the theoretical conditions is in many instances far be'ow that as

determined from simulations. Thus, although slow adaptation allows for an analysis which

provides quantitative robustness measures, there are inherent restrictions in the analysis.

Transient A nalysis

* -/ To remove these restrictions requires understanding the transient behavior of adap-

tive systems. Methods for analyzing the transient were examined during Phase I. Some

of the results are reported in Kosut et al. (1986) and Kosut and Bitmead (1986). This

investigation of the transient properties shows that some of the interesting phenomena can

be analyzed. The tools for analysis involve a combination of small gain theory, passivity,

and the method of averaging with these all linked together by the Contraction Mapping

Principal.

Beyond Hand Calculations

Although each of these tools, in principal, involves straightforward calculations,

* wo workshops (Aug. 1984, 1985) organized by Prof. P.V. Kokotovic (Univ. of

Illinois) and separate visits by Dr. Kosut, Prof. Kokotovic, and Prof. C.R. Johnson (Cornell

Univ.) to Prof. B.D. Anderson's group at the Australian National University played a

~Zi ' significant part in these research efforts. Dr. Kosut's visits were supported by AFOSR

Contract F49620-85-C-0094, NSF Grant INT-85-13400, and a Visiting Fellow Award from

the Australian National University.
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it is clear that the level of complexity of a realistic adaptive system is well beyond hand

calculation. Hence, an area for further work is in the development of software tools which

can eliminate some of the tedious parts of the analysis.

The same issue can in fact be raised regarding the slow adaptation analysis dis-

cussed earlier. Even simple examples can just barely be worked out by hand. At the

present time there are no available "user-friendly" software tools for dealing principally

with nonlinear systems. This is a research issue in both mathematics and computation,

and it is one we feel is essential to a study of adaptive systems and the development of

primitives for the Phase II effort.

Task 3.1: Adaptive Linear Control

In this section we will descibe in some detail our approach to developing the

mathematical and computational tools for analyzing the parameter adaptive system shown

below in Figure 3-3.
W

Planty

Algorithm

x Design

%P

Control

llop.

Figure 3-3. Parameter adaptive control

In this system u(t) and y(t) are the vectors of measured inputs and outputs, w(t) is a

vector of exogenous inputs,i.e., references, disturbances, and noise sources. The vector of

adaptive parameters is O(t), which is mapped into a control parameter vector p(t) by some

design rule, typically a memoryless nonlinear function implicitly defined by the design rule,
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e.g., LQG or optimal H,, methods, as discussed in Section 3.1(Task 1). The vector 0,

denotes the initial parameter value, say at t = 0. This system structure is valid for most

parameter adaptive systems, be they continuous, discrete, or hybrid [see, e.g., Kosut and

Bitmead(1986), Ljung and Soderstrom(1983)].

In order to illustrate the basic ideas, we will assume here that the parameter

adaptive algorithm is continuously adjusted. In practice, parameter adjustments would be

at discrete times or the control signal is the output of a digital computer. Suppose that

the plant is linear-time-invariant, and for fixed values of the control parameter vector p

the control is also linear-time-invariant. Then, the parameter adaptive system of Figure

3-3 may be described by the differential equations

= A(9)x + B()w(t)(3.1)

S= (t)q(x, 9)

where O(t) E RP is the adaptive parameter, and x(t) E R" is the system state, consisting

of plant, controller, and filter states. The matrix functions A(O), B(O) are determined by

the design rule 0 a-+ p and the parametric controller structure. The nonlinear function

q(x, 9) is determined by the choice of algorithm, and y(t) is the speed of adjustment, often

referred to as the adaptation gain. For example, when using a recursive-least-squares

(RLS) algorithm we have y(t) = 1/t, whereas with a gradient based algorithm, such as

least-mean-squares (LMS), we have 7 (t) = y, a positive constant.

Consider the simple gradient algorithm

=Yo (3.2)

where 0(t) E RP is referred to as the regessor, e(t) as the prediction error, and -y is the

positive constant adaptation gain. In most cases we also have

Dx (3.3)

=cTx

where x(t) E R' is the system state governed by (3.1) with D E RP×n and c E Rn. Thus,
the adaptive algorithm has the simpler form

= 7q(x) (3.4) :

where q(x) is the polynomial in x given by

q(X) = cTxDx (3.5)
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This algorithm has been used as a prototype for many studies, e.g., Anderson et al.(1986),

Kosut et al.(1987). The genisis of the algorithm is to adjust 0(t) so that it asymptotically

approaches a member of the set

.7 pt = {0 E RP: avg[e2 ] is a minimum} (3.6)

In the ideal case, the parametrization can be selected so as to acheive what is called perfect

matching, i.e., for some restricted class of exogenous inputs (usually no disturbaces), the

set .F0opt has a single member such that -(t) = 0. Under more realistic conditions, the best

that can happen is that 0(t) asymptotically approaches a small neighborhood of

0= {E RP: avg[¢6] = 0} (3.7)

If for fixed 9, the regressor 0(t) is constructed to be identical with -OE(t)/aO, then ..

is the set of all local minima of avg[e2]. Since ae(t)/8O is a function of the true, but

unknown plant, the regessor can only realistically be constructed as an approximation.

From a practical point of view it is acceptable that the parameters approach and remain

in a small neighborhood of J., provided that members of this set also produce acceptable

closed loop performance.

Assuming this is so, let 0. E RP denote such a setting, of which there could be

many. We refer to each 0. as a tuned parameter and to the corresponding system

./-

i. = A(O.)x + B(O.)w(t)

E= xcTX* (3.8)i €.0 = Dx. *

as the tuned system [see, e.g., Kosut and Friedlander(1985)]. Clearly ( 3.8) is the same as

system (3.1) but with 0(t) fixed at 9.. We can now pose the following questions regarding

the adaptive system (3.1):

(1) How do the tuned parameters depend on the exogenous inputs?

i (2) Is the adaptive system stable in a neighborhood of the tuned system, i.e., are
solutions {x(t), O(t) } stable near {x(t),0O} ?

(3) What is the region of attraction in (x, 9) to a small neighborhood of {x*(t), 0.}?

The primitives we envision for answering these questions would accept as an in-

put the adaptive system described by (3.1). Our mock-up software would, for example,

translate the block diagram of Figure 3-3 into (3.1) through a formal language architecture.

Page 44

I



Task 3.2: Time-Scale Decomposition and Averaging

* Time-Scale Decomposition

To see more explicitly what is involved, particularly where some mathematical and

computational research is required, we will proceed with our example sysytem (3.1),(3.2).

Following the proceedures given in Anderson et al.( 1986), we study the behavior of (3.1) in

qthe neighborhood of all constant parameter solutions. For this purpose, let v(t, 0) denote

the state x(t) when - = 0. We refer to v(t, 0) as the frozen parameter system state, or

frozen state for short. Hence, for each 0 E R P, L(t, 0) satisfies the partial differential

equation
"v/8t = A(0)v + B(O)w(t) (3.9)

By introducing the error state

77(t) = x(t) - V(t, 0(t)) (3.10)

the (x, 0)-system of (3.1) can be transformed into the equivalent (77, 0)-system:

A 9 yf(t,0, 71)

= A(O)q - 7g(t, 9, 77)

where the functions f and g are given by

f(t, 9, q) = q(v(t, 9) + t) 3.
(3.12)

o(t, 0,'1) = [o(t, 0)10]f(t, 9, 7)

The transformation of (3.1) into (3.11) is referred to as a time-scale decomposi-

tion, because in general, 0(t) changes much more slowly than 77(t). This is certainly the

case whenever y, the adaptation gain, is small. But it is also true whenever 0(t) is near

convergence. Since the (qi, 0)-system of (3.11) is equivalent to the original (x, 0)-system of

(3.1), the answers to the questions posed before will involve the analysis of (3.11). For

example, determining the tuned parameter set defined by (3.7) means solving for those

0. E R P which satisfy

avg[f(., 0.,0)] = 0 (3.13)

Out of all possible solutions, select only those which also satisfy performance criteria for

the tuned system (3.8), e.g., ReA[A(0.)] < -/., where 9. is a positive constant which I
1L specifies the damping requirement.

Averaging

Page 45

rI



Integrated Systems Inc. d

A further restriction of those 0. E R P satisfying (3.13) is that solutions (x, 0) of

(3.1) which originate in a small neighborhood of the tuned solutions (x., 0.) should remain

there. Under fairly mild "smoothness" conditions on the functions f and g in (3.12), it

is shown in Anderson et al(1986), that for a sufficiently small adaptation gain -y, and a

sufficiently small peak value of the tuned error signal -. (t), solutions of (3.1) originating

in a small neighborhood of the tuned system (x., 0*) will remain there if

maxReAi[B(O*)]< 0 (3.14)

and, moreover, will leave there if

maxReAi[B(0.)] > 0 (3.15)
i

where the matrix function 9 '-* B(O) is given by

B(O) = -avg[f(., 0, 0)] (3.16)

The sharp stability-instability boundary expressed by (3.14) and (3.15) allows not ,

only for an assessment of a particular design, but also indicates how to modify and improve

the algorithm. In particular we can also show that under the conditions stated above, if

(3.14) holds then

lim sup 11O(t) - 0.11 = O(lim sup lE,(t)I) + 0(Y)
t-00t-00(3.17)

limsup Iin(t)I = 0(Y)t-00, "

Specific expressions can be obtained for the right hand sides above, but these are usually

complicated, and more importantly, are conservative. Methods to reduce the conservatism..

was explored in Phase I. These methods involve the use of fixed point analysis which we will

now briefly descibe. It is worth mentioning that fixed point theory is also the fundamental

tool behind the derivation of (3.14)-(3.17), together with the method of averaging. As we ' ..

will see from the discussion to follow, and as was discovered during Phase I, averaging is

not required. ..

Task 3.3: Fixed Point Analysis

Here we will descibe a very powerfull nonlinear analysis tool, namely the Banach

contraction mapping principal,which among other possibilities, enables one to compute

the rate of convergence and region of attraction for the adaptive system. Actually, the
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adaptive system as represented by (3.11) can be analyzed by calling upon one of several

fixed point theorems, as explained in Kosut and Bitmead(1986), and Kosut(1987). For

example, the Banach Fixed Point Theorem, sometimes referred to as the Contraction

Mapping Theorem(CMT), states that an operator 1 has a unique fixed point in a closed

subset M of a Banach space if r is contractive on M, e.g., Hale(1969). Referring to (3.11)

we take r as the mapping of functions 6(t) into functions 0(t) defined implicitly as follows:

=/(, q)(3.18)N

= A(9) - yg(t, 0, ) k3 8

Observe that fixed points of r in M, i.e., those functions 0 E M which satisfy the operator

equation W
o = ro (3.19)

are solutions in M of the parameter trajectories of the adaptive system (3.11), or equiva- 40

lently (3.1). For example, the results (3.14)-(3.17) are arrived at by choosing

M., { E C[O, 00): 110(t) - 0. 11 , r. + ri exp(-at)} (3.20)

where C[O, oo) is the Banach space of continuous bounded functions, and r,, rl, and a are

positive constants.

In the process of establishing that r is contractive on M, we utilize the method

of averaging to establish the stability, near 0., of

) = Yf(t, 6, 0) (3.21)

This is the origin of condition (3.14). It is important to point out that neither averaging

nor small -y is required to establish the stability of (3.21) near 0.. For example, as we

discovered in Phase I, if the function f(t, 8, 0) is periodic in t uniformly for 0 in a compact

set, then stability of (3.21) near 0. can be established by linearization and Floquet Theory

[Kosut(1987)]. Condition (3.14) is replaced by a weaker condition and the limitation on

the allowable size of the adaptation gain is considerably reduced over that imposed by

averaging theory. During Phase II, we plan to use these ideas to develop a primitive which -

numerically establishes the conditions for 1 to be contractive on M. Establishing such

conditions can be viewed as a canonical problem in analyzing the stability properties of

adaptive systems. Observe that because the contraction analysis considers operators in

Banach spaces, the same results apply to discrete-time or hybrid adaptive systems, i.e.,

any linear adaptive control of a linear plant.

Pto
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Summary

In this section we have briefly indicated that the analysis of linear adaptive systems --!I

is mathematically equivalent to the study of system(3.11), i.e., I

V (t, 9, 77) (3.22)

= A(9)i - Tyg(t, 9, t1)

Under ideal conditions, the adaptive parameter 9(t) asymptotically approaches a constant

0. E R P which satisfies

f(t, .,O) =0 (3.23)

and the error state asymptotically approaches zero. When the ideal conditions no longer

hold, as is normally the case, the best to hope for is that O(t) will now approach a small

neighborhood of 0., which is now a solution of

avg[f(., 0., 0)] =0 (3.24)

Moreover, the error rq(t) will not asymptotically vanish, but will become small with a zero

average.

During Phase II we propose to develop an analysis primitive which will quantify the

behavior of (3.22). In particular, the primitive will answer questions about its asymptotic

and transient characteristics, such as:

(1) Asymptotic analysis: What are the stability propertiez of ( 3.22) in the neighbor- "

hood of (9, r7) = (0., 0)?

(2) Transient analysis: What is the rate of convergence and region of attraction of

(3.22) to a small neighborhood of (0,77) = (0., 0)?

We have shown that the above characteristics can be extracted from (3.22) by "

performing a fixed point analysis of the operator r : 0 -+ 9 defined implicitly by (3.18).

Since fixed points of F in a Banach subspace M are parameter trajectories O(t) which

solve (3.22), it follows that developing a primitive for determining conditions for F to

be contractive on M provides a reasonable analysis approach. During Phase II we will

develop and refine the fixed point analysis tool so that the primitives would optimize the

contraction conditions, thereby resulting in a non-conservative analysis.

3.4 TASK 4: Language Architecture for Control Design

The objective of this task is to make the results of the research carried out in the

first three tasks widely accessible by incorporating them in a language specially tailored
PS. ,.s
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for control design. The task will consist of identifying suitable primitives for the language,

coming up with a suitable syntax for the language, and finally developing some mock-up

software to demonstrate the feasibility of the language architecture. Clearly the specific

details of the language architecture can be decided upon only after the completion of the

first three tasks. Thus in this section we describe the general philosophy that will guide

our language development efforts. To make the ideas clearer, we will make analogies with

existing software such as MATLAB, MATRIX x and SFPACK where appropriate.

By now it is universally accepted that numerical computations are best done in

FORTRAN. The existing software subroutines such as LINPACK, EISPACK, IMSL and

son on have been validated through usage by innumerable users, and it would be foolhardy

to attempt a translation into another language. Software developers have thus concentrated

on retaining these FORTRAN subroutines as the basic building blocks around which a su-

perstructure can be built up in another language. For example, the original MATLAB

not only used FORTRAN subroutines, but also a command parser written in FORTRAN,

whereas the recent PC-MATLAB has a compiler written in C. Another trend has been

the introduction of higher level commands at an ever-increasing level. Thus MATLAB

permitted the user to define executive routines which sere essentially macros but did not

permit the substitution of variable names; in contrast, recent software such as MATRIXx

and SFPACK permit user-defined functions. Whereas MATLAB functions for order reduc-

tion, Ho, norm minimization, etc. By the word primitives, we mean these basic building

blocks. In MATLAB, operations such as taking the exponential of a matrix, or carrying

out its singular value decomposition, etc. are the primitive operations, and the user must

express whatever he wishes to do in terms of these primitive operations. In SFPACK, the

primitives include the original MATLAB primitives, but in addition contain much higher

level commands such as finding an Ho-norm minimizing controller, given the plant and

the desired McMillan degree of the reduced order approximation. Obviously, the avail-

• ability of these higher level primitives makes the designer's task much easier. In the new

proposed software, an obvious primitive would be the solution of the canonical problem,

given the various parameters of the optimization problem. But other likely candidates will

emerge during the course of the research.

The language architecture consists of the manner in which problems are stated and

solutions are presented back to the user. Consider for instance the problem of designing

J a controller at a single operating point, as described in subtask 1.1. As mentioned earlier,

this problem can be solved by posing it as a canonical optimization problem. However,

from the standpoint of the user, it is much more natural to specify the problem in terms

of the design constraints rather than in terms of the various Fi, Gi matrices arising in

Equation (1.5). In developing a suitable language architecture, we will take such issues
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into consideration. An illustration of a user-interface which is very natural from a control

designer's standpoint is given in (Boyd et al. 1986).

The final objective of this task is to develop some mock-up software which illus-
trates the feasibility and applicability of the research results developed in Tasks 1 to 3. By
mock-up software we mean software which is essentially complete from the standpoint of
the numerics and the algorithmic procedures, but which requires further work on the user
interface, input-output formatting and the like. The mock-up software can then be turned
over to commercial software developers who can then proceed further and come up with a
commercially viable product similar to MATRIXx.
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